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ABSTRACT

A group-graded K-algebra A =
⊕

g∈G Ag is called locally finite in case

each graded component Ag is finite dimensional over K. We characterize

the graphs E for which the Leavitt path algebra LK(E) is locally finite in

the standard Z-grading. For a locally finite Z-graded algebra A we show

that, if every nonzero graded ideal has finite codimension in A, then every

nonzero ideal has finite codimension in A; that is, Z-graded just infinite

implies just infinite. We use this result to characterize the finite graphs

E for which the Leavitt path algebra LK(E) is locally finite just infinite.

We then give an explicit description of the graphs and algebras which

arise in this way. In particular, we show that the locally finite Leavitt

path algebras are precisely the noetherian Leavitt path algebras.
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Throughout this article K will denote a field. As in [8], we say that a K-

algebra B is just infinite dimensional (or, more concisely, just infinite) in

case dimK(B) is infinite, but dimK(B/I) is finite for every nonzero ideal I of

B. We say that a Z-graded K-algebra A =
⊕

n∈Z
An is locally finite in case

dimK(An) <∞ for every n ∈ Z.

For a graph E and a field K, the Leavitt path algebra LK(E), and its analytic

counterpart the Cuntz–Krieger graph C∗-algebra C∗(E), have been the focus

of much recent attention (see, e.g., [1], [4], [6], and [11]). After presenting a

brief overview of this topic, in Section 1 we classify those graphs E for which

the Leavitt path algebra LK(E) is locally finite (Theorem 1.8). With a general

result about Z-graded algebras in hand, in Section 2 we then find those finite

graphs for which LK(E) is locally finite just infinite (Theorem 2.7). In the

final section we describe explicitly those K-algebras which arise in this way.

Specifically, in Theorem 3.3, we describe all locally finite just infinite Leavitt

path algebras, and then in Theorem 3.8, we describe all locally finite Leavitt

path algebras.

Of course, any finite dimensional algebra is necessarily locally finite. Thus

the work presented in the current article can be viewed as a logical followup to

[3], in which the authors completely classify the finite dimensional Leavitt path

algebras.

1. Locally finite Leavitt path algebras

The Leavitt path algebra of a graph is defined in [1]. We briefly recall the es-

sentials here. A (directed) graph E = (E0, E1, r, s) consists of two countable

sets E0, E1 and maps r, s : E1 → E0. The elements of E0 are called vertices

and the elements of E1 edges. If s−1(v) is a finite set for every v ∈ E0, then the

graph is called row-finite. Throughout this paper we will be concerned only

with row-finite graphs. If E0 is finite then, by the row-finite hypothesis, E1

must necessarily be finite as well; in this case we say simply that E is finite.

A vertex which emits no edges is called a sink. A path µ in a graph E is a

sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n− 1. In

this case, s(µ) := s(e1) is the source of µ, r(µ) := r(en) is the range of µ, and

n is the length of µ. For n ≥ 2 we define En to be the set of paths of length

n, and E∗ =
⋃

n≥0E
n the set of all paths.
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We define the Leavitt path K-algebra LK(E) as the K-algebra generated

by a set {v : v ∈ E0} of pairwise orthogonal idempotents, together with a set

of variables {e, e∗ : e ∈ E1}, which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.

(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.

(4) v =
∑

{e∈E1|s(e)=v} ee
∗ for every v ∈ E0 that emits edges.

The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost

edge. The set {e∗ : e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote

s(e), and we let s(e∗) denote r(e). If µ = e1 . . . en is a path, then we denote by

µ∗ the element e∗n . . . e
∗
1 of LK(E).

It is sometimes helpful to look at LK(E) in the following way. If we start

with a graph E, we can form a new graph Ê having the same vertex set as

E, but in which, for each edge e of E, we add an edge e∗ whose orientation is

opposite to that of e. Next we form KÊ, the (now-standard) path algebra of

Ê with coefficients in K. Finally, LK(E) can be viewed as the quotient of KÊ

modulo the two sided ideal generated by the relations described in (3) and (4)

above.

While LK(E) arises as the quotient of a path algebra, in general these Leavitt

path algebras have properties which are not found in the usual path algebra con-

struction. For instance, the class of Leavitt path algebras includes the algebras

described by Leavitt in [10]. These algebras (denoted A = LK(1, n), for each

n ≥ 2) have the property that A ∼= An as free left A-modules; in particular, they

do not possess the Invariant Basis Number property, and so intuitively should

be thought of as being “far” from possessing any sort of chain condition. In

the more general context of Leavitt path algebras, the Leavitt algebra LK(1, n)

arises as the algebra LK(E), where E is the “rose with n petals” graph

•v y1

hh

y2

ss

y3

��

yn

RR...

On the other side of the structural spectrum, the full n× n matrix ring over K

arises as the Leavitt path algebra of the oriented n-line graph

•v1

e1 // •v2

e2 // •v3 •vn−1

en−1

// •vn
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while the Laurent polynomial ring K[x, x−1] arises as the Leavitt path algebra

of the “one vertex, one loop” graph

•v x
hh

In [3] the authors determine completely the structure of the finite dimensional

Leavitt path algebras. It is the goal of the current article to extend these results

to the locally finite Leavitt path algebras.

Note that if E is a finite graph then we have
∑

v∈E0 v = 1; otherwise, by

[1, Lemma 1.6], LK(E) is a ring with a set of local units consisting of sums

of distinct vertices. Conversely, if LK(E) is unital, then E0 is finite. For any

subset H of E0, we will denote by I(H) the ideal of LK(E) generated by H .

It is shown in [1] that LK(E) is a Z-graded K-algebra, spanned as

a K-vector space by {pq∗ : p, q are paths in E}. In particular, for each

n ∈ Z, the degree n component LK(E)n is spanned by elements of the form

{pq∗ : length(p) − length(q) = n}. The degree of an element x, denoted deg(x),

is the lowest number n for which x ∈
⊕

m≤n LK(E)m. The set of homoge-

neous elements is
⋃

n∈Z
LK(E)n, and an element of LK(E)n is said to be

n-homogeneous or homogeneous of degree n.

The K-linear extension of the assignment pq∗ 7→ qp∗ (for p, q paths in E)

yields an involution on LK(E), which we denote simply as ∗. Clearly,

(LK(E)n)∗ = LK(E)−n for all n ∈ Z.

We will analyze the structure of various graphs in the sequel. An important

role is played by the following three concepts. An edge e is an exit for a path

µ = e1 . . . en if there exists i such that s(e) = s(ei) and e 6= ei. If µ is a path

in E, and if v = s(µ) = r(µ), then µ is called a closed path based at v. We

denote by CPE(v) the set of closed paths in E based at v. If s(µ) = r(µ) and

s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle.

Definition 1.1: We say that a graph E satisfies Condition (NE) if no cycle in E

has an exit.

Of course the one vertex, one loop graph satisfies Condition (NE). More

generally, a graph containing one loop together with any number of paths having

range equal to the vertex of the loop, but in which no path has source equal to

the vertex of the loop, satisfies Condition (NE).
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Lemma 1.2: If a finite graph E satisfies Condition (NE) then every path in E

of length at least card(E0) ends in a cycle.

Proof. Clearly a path µ of length greater than card(E0) contains a closed path

ν = e1 . . . er. Since E satisfies Condition (NE), then ν must be in fact a cycle;

moreover µ necessarily ends in es . . . er . . . es−1 for some s ∈ {1, . . . , r} because

this cycle has no exits.

Let n ∈ Z. For m ∈ N with n ≤ m, we let Cn
m denote the following subset of

the graded component LK(E)n of LK(E):

Cn
m = {pq∗ : p ∈ Em, q ∈ Em−n}.

For n > m, define Cn
m = ∅.

Lemma 1.3: Let n ∈ Z. If there exists t ∈ N, t ≥ n, such that Cn
t+1 ⊆

⋃t
i=1 C

n
i ,

then
⋃∞

i=1 C
n
i =

⋃t
i=1 C

n
i .

Proof. Suppose Cn
t+1 ⊆

⋃t
i=1 C

n
i . By induction on r, we show that for every

r ∈ N, Cn
t+r ⊆

⋃t
i=1 C

n
i . The case r = 1 is our hypothesis. Suppose Cn

t+r−1 ⊆
⋃t

i=1 C
n
i , and consider µ = et+ret+r−1 . . . e1f

∗
1 . . . f

∗
t−n+r−1f

∗
t−n+r ∈ Cn

t+r. If

we define ν = et+r−1 . . . e1f
∗
1 . . . f

∗
t−n+r−1 ∈ Cn

t+r−1, then µ = et+rνf
∗
t−n+r ∈

et+rC
n
t+r−1f

∗
t−n+r ⊆ et+r(

⋃t
i=1 C

n
i )f∗

t−n+r ⊆
⋃t+1

i=2 C
n
i ⊆

⋃t
i=1 C

n
i .

We are now in position to obtain the main result of this section.

Theorem 1.4: For a finite graph E the following conditions are equivalent:

(i) LK(E)n has infinite dimension for some n ∈ Z.

(ii) LK(E)n has infinite dimension for every n ∈ Z.

(iii) There exists a cycle in E with an exit.

Proof. (ii) =⇒ (i) is obvious.

(i) =⇒ (iii). Let n ∈ Z be such that LK(E)n has infinite dimension. Suppose

that no cycle has an exit. Let t = max(n, card(E0)). We show that Cn
2t+1 ⊆

⋃2t
i=1 C

n
i .

Let ν be a nonzero element in Cn
2t+1, say ν = e1 . . . e2t+1f

∗
1 . . . f

∗
2t−n+1. Then,

by Lemma 1.2, r(e2t+1) is in a cycle c. By noting that 2t−n+1 = t+t−n+1 ≥

t+ 1 ≥ card(E0), Lemma 1.2 can be applied to f2t−n+1 . . . f1, so that f1 must

belong to a cycle d. Moreover, since ν 6= 0 and E satisfies Condition (NE),

c = d and therefore e2t+1 = f1 (by Condition (NE) again). This yields that
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ν ∈ Cn
2t, since Condition (NE) implies that e2t+1f

∗
1 = s(e2t+1) (by relation (4)).

Now, since
⋃∞

i=1 C
n
i is a generating set for LK(E)n, by Lemma 1.3 we obtain a

contradiction and finish the proof.

(iii) =⇒ (ii). Let f be an exit for a cycle c and suppose that v := s(f) = s(c).

Let k = deg(c), and write c = ek . . . e1. Consider n ≥ 0 and decompose n =

bk + s, with 0 ≤ s < k. We claim that {es . . . e1c
bcr(c∗)r : r ∈ N} is a linearly

independent set in LK(E)n. Indeed, suppose
∑n

r=i kres . . . e1c
bcr(c∗)r = 0 for

kr ∈ K with ki 6= 0. Multiply on the left by (c∗)i(c∗)be∗1 . . . e
∗
s, and on the

right by ci, to get kiv +
∑n

r=i+1 krc
r−i(c∗)r−i = 0 (apply [1, Lemma 2.2]).

Since f is an exit for c, we obtain 0 = kif
∗v +

∑n
r=i+1 krf

∗cr−i(c∗)r−i = kif
∗,

a contradiction. The case n < 0 can be obtained by using the involution:

since LK(E)n = (LK(E)−n)∗, then dimK(LK(E)n) = dimK((LK(E)−n)∗) =

dimK(LK(E)−n) = ∞.

Remark 1.5: The finiteness hypothesis on E in the preceding result cannot

be dropped. For instance, if E is an acyclic graph with infinitely many ver-

tices and only a finite number of edges, then dimK(LK(E)0) = ∞, while

dimK(LK(E)n) = 0 for any sufficiently large n. In general this happens for

any infinite graph such that En = ∅ for some n ∈ N.

Remark 1.6: As a consequence of the previous result, for a finite graph E, if

one homogenous component of the Leavitt path algebra LK(E) has infinite

dimension then all the homogenous components have that same (necessarily

countably infinite) dimension. However, in case the homogeneous components

have finite dimension, the dimension of the components can differ. Of course

any nontrivial finite dimensional Leavitt path algebra will have this property

(see, e.g., [3]). For an infinite dimensional but locally finite example of this

phenomenon, consider the Leavitt path algebra of the graph E

•u

f

33
g

++
•v e

vv

Using Lemma 1.3, a straightforward computation yields dimK(LK(E)0) = 8,

dimK(LK(E)1) = dimK(LK(E)−1) = 9, and dimK(LK(E)n) = 3 for all n

having |n| ≥ 2.

The following Lemma will be useful throughout the sequel, and will be used

often without explicit mention.
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Lemma 1.7: If LK(E) is a locally finite Leavitt path algebra, then E is finite.

Proof. If E were not finite, then E0 would yield an infinite set of linearly inde-

pendent elements of LK(E)0.

With this lemma, Theorem 1.4 gives the following.

Theorem 1.8: For a graph E and any field K the following are equivalent:

(i) LK(E) is locally finite.

(ii) E is finite and has Condition (NE).

We end this section by identifying the locally finite simple Leavitt path alge-

bras.

Corollary 1.9: Let LK(E) be a locally finite Leavitt path algebra. Then

LK(E) is simple if and only if LK(E) ∼= Mn(K) for some positive integer n.

Proof. By Theorem 1.8 we have that E is finite and has Condition (NE). On

the other hand, by [1, Theorem 3.11], E has also Condition (L), therefore E is

an acyclic graph. Now using [3, Proposition 3.5], LK(E) ∼=
⊕t

i=1 Mni
(K). But

LK(E) being simple implies the desired result.

2. Locally finite just infinite Leavitt path algebras.

Having identified the locally finite Leavitt path algebras in the previous section,

we now determine which of these algebras are in fact just infinite.

As we show in the following example, a graded just infinite Leavitt path

algebra need not be just infinite. To demonstrate this, we need some additional

information about various subsets of vertices of a graph. We define a relation ≥

on E0 by setting v ≥ w if there is a path µ ∈ E∗ with s(µ) = v and r(µ) = w.

A subset H of E0 is called hereditary if v ≥ w and v ∈ H imply w ∈ H . A

hereditary set is saturated if every vertex which feeds into H and only into H

is again in H , that is, if s−1(v) 6= ∅ and r(s−1(v)) ⊆ H imply v ∈ H . Denote

by H (or by HE when it is necessary to emphasize the dependence on E) the

set of hereditary saturated subsets of E0.

Example 2.1: The Leavitt path algebra LK(E) of the following graph E

•v2

f2
// •v1

f1
// •v e

vv
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is a graded simple (and therefore graded just infinite) K-algebra, but is not just

infinite, as follows.

It is straightforward to show that the only hereditary and saturated subsets

of E0 are ∅ and E0. Thus [4, Theorem 6.2] applies, and we conclude that LK(E)

is graded simple (i.e., the only graded ideals of LK(E) are {0} and LK(E)). In

particular, LK(E) is graded just infinite.

We now show that there are ideals in LK(E) of infinite codimension, specifi-

cally, the ideal I := 〈v+e〉 is such. We start by showing that v 6∈ I. Suppose on

the contrary that v ∈ I. Then there exist monomials ai and bi in LK(E), and

scalars ki ∈ K such that v =
∑

i kiai(v+e)bi. With the use of the last equation

and the fact that v(v+ e)v = v+ e we can assume that vaiv = ai and vbiv = bi.

Let a denote any element of the form a = ai or bi. Write a = αβ∗, where α, β

are paths of arbitrary length (they can be of length zero, that is, a vertex). As

α is a monomial we necessarily have that v is a local unit for α on the right,

so that a = αvβ∗. In this situation we have vαv = α and vβ∗v = β∗, so that,

α, β ∈ CP (v). But it is clear that in E we have CP (v) = {ek : k ≥ 0}. Thus

a = en(e∗)m for some n,m ≥ 0. Moreover, since e has no exits, then a = en or

a = (e∗)n, where n ∈ N.

A similar equation holds for all the monomials ai and bi, so that we

get v =
∑

i kie
mi(v + e)eni with mi and ni ∈ Z (where for r < 0 we in-

terpret er as (e∗)
−r

). Then v =
∑

i ki(e
mi+ni + emi+ni+1). Rewrite v as

v =
∑s

i=r k
′
i(e

i + ei+1). A degree argument on the highest and on the lowest

power of the right hand side shows s + 1 = 0 and r = 0, a contradiction since

r ≤ s. We conclude that v 6∈ I.

Now, consider the infinite set of vertices {vi}. We claim that {vi}i is a lin-

early independent set in LK(E)/I. Suppose otherwise, that for some scalars

k1, . . . , km ∈ K, and some vertices vi1 , . . . , vim
, x =

∑m
j=1 kjvij

∈ I. Con-

sider w = vij
∈ {vi1 , . . . , vim

}, with kj 6= 0. Then v = f∗
1 . . . f

∗
ij
fij

. . . f1 =

f∗
1 . . . f

∗
ij
wfij

. . . f1 = kj
−1f∗

1 . . . f
∗
ij
wxwfij

. . . f1 ∈ I, contrary to the result of

the previous paragraph.

Here is some additional useful information about graphs. If µ is a path having

v = s(µ) = r(µ) and s(µi) 6= v for every i > 1, then µ is called a closed simple

path based at v. We denote by CSPE(v) the set of closed simple paths

in E based at v. For a path µ we denote by µ0 the set of its vertices, i.e.,

{s(µ1), r(µi) : i = 1, . . . , n}. For a graph E, we let V0 denote the set of vertices
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which do not lie on any cycle (see [2]), i.e.

V0 = {v ∈ E0 : CSP (v) = ∅}.

For an H ∈ H, the quotient graph of E by H is given by

E/H = (E0 −H, {e ∈ E1 : r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1).

Lemma 2.2: If LK(E) is a graded just infinite Leavitt path algebra and

∅ 6= H ∈ H then E0 −H is a finite set and E0 − V0 ⊆ H .

Proof. If E0 − H were infinite then E/H would contain infinitely many ver-

tices and LK(E/H) would be infinite dimensional but, by [5, Lemma 2.3 (1)],

LK(E/H) ∼= LK(E)/I(H) with I(H) a nonzero graded ideal of LK(E), which

is impossible by the hypothesis.

Suppose now that there exists v ∈ (E0 − V0) − H , that is, there exists a

cycle µ based at v 6∈ H . As H is hereditary, µ0 ∩ H = ∅. If we write µ =

µ1 . . . µn, then µi ∈ E/H as r(µi) 6∈ H . Thus E/H completely contains the

cycle µ, and therefore again LK(E/H) is infinite dimensional, contrary to the

hypothesis.

Lemma 2.3: Let LK(E) be a graded just infinite Leavitt path algebra. If

H,H ′ ∈ H are nonempty, then the intersection H ∩H ′ is nonempty.

Proof. Since LK(E) is infinite dimensional, by [3, Corollary 3.6], either E0 is

infinite or E is not acyclic. In the first case, apply Lemma 2.2 to obtain that

both E0 −H and E0 −H ′ are finite. Now if H ∩H ′ = ∅, then H ⊆ E0 −H ′,

and therefore both H and E0−H are finite sets, which cannot happen when E0

is infinite. Now, if E is not acyclic, then pick any cycle in E, and let v denote

the vertex at which the cycle is based. But then v 6∈ V0, and again Lemma 2.2

applies to get v ∈ H ∩H ′.

We denote by E∞ the set of infinite paths γ = (γn)∞n=1 of the graph E and

by E≤∞ the set E∞ together with the set of finite paths in E whose end vertex

is a sink. We say that a vertex v in a graph E is cofinal if for every γ ∈ E≤∞

there is a vertex w in the path γ such that v ≥ w. We say that a graph E is

cofinal if so are all the vertices of E.

The set T (v) = {w ∈ E0 : v ≥ w} is the tree of v, and it is the smallest

hereditary subset of E0 containing v. We extend this definition for an arbitrary

set X ⊆ E0 by T (X) =
⋃

x∈X T (x). The hereditary saturated closure



338 G. ABRAMS, G. ARANDA PINO AND M. SILES MOLINA Isr. J. Math.

of a set X is defined as the smallest hereditary and saturated subset of E0

containing X . It is shown in [4] that the hereditary saturated closure of a set

X is X =
⋃∞

n=0 Λn(X), where

(1) Λ0(X) = T (X),

(2) Λn(X) = {y ∈ E0 : s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X),

for n ≥ 1.

We now have the tools to give a graph-theoretic characterization of all of the

graded just infinite Leavitt path algebras.

Theorem 2.4: Let LK(E) be an infinite dimensional Leavitt path algebra.

The following conditions are equivalent:

(i) LK(E) is graded just infinite.

(ii) E is cofinal.

(iii) LK(E) is graded simple.

Proof. (ii) =⇒ (iii). By [4, Theorem 6.2] the result follows.

(iii) =⇒ (i) is evident since by hypothesis LK(E) is infinite dimensional.

(i) =⇒ (ii). If we suppose that E is not cofinal, then by again using [5,

Lemma 2.8] there exists a nontrivial hereditary and saturated subset H of E0.

Let y1 denote a vertex which is not in H , and consider H ′ = {y1}. By Lemma

2.3, H ∩H ′ 6= ∅. In this case the hereditary saturated closure described above

gives us some minimal n ∈ N with H ∩ Λn({y1}) 6= ∅.

If n > 0, then we have that H ∩ {y ∈ E0 : ∅ 6= r(s−1(y)) ⊆ Λn−1({y1})} 6= ∅,

since H ∩ Λn−1({y1}) = ∅.

Take z ∈ H with ∅ 6= r(s−1(z)) ⊆ Λn−1({y1}). In particular r(s−1(z))∩H =

∅, which contradicts that H is hereditary.

So n = 0, and therefore H ∩ T ({y1}) 6= ∅. Since y1 6∈ H , we can then find

a path ν = ν1 . . . νn with n ≥ 1 such that s(ν) = y1, r(ν) ∈ H but r(νi) 6∈ H

for i < n. Since H is saturated and s(νn) = r(νn−1) 6∈ H , there must exist

e ∈ E1 with r(e) 6∈ H and s(e) = s(νn). We claim that r(e) 6= s(νi) for every

i = 1, . . . , n; otherwise, if r(e) = s(νi) for some i, then s(νi) 6∈ V0 as the path

given by νiνi+1 . . . νn−1e is a closed path based at this vertex, which yields a

cycle based at this vertex, but this contradicts, by Lemma 2.2, the fact that

s(νi) 6∈ H .

Rename this new vertex r(e) as y2. In particular y1 6= y2. Repeat the

process with y2, thus yielding a path δ = δ1 . . . δm with m ≥ 1 such that
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s(δ) = y2, r(δ) ∈ H and r(δi) 6∈ H for i < m. Once more, there exists,

by the saturation of H , an edge f ∈ E1 with r(f) 6∈ H and s(f) = s(δm).

Not only do we have r(f) 6= s(δi) for all i = 1, . . . ,m as before, but also

r(f) 6= s(νi) for i = 1, . . . , n. (Otherwise, if for instance r(f) = s(ν1) = y1,

then ν1 . . . νn−1eδ1 . . . δm−1f is a closed path based at r(f) 6∈ H , a contradiction

to Lemma 2.2.)

Continuing in this way, we rename r(f) as y3, so that in particular we have

y3 6= y1, y2. In this way we obtain an infinite sequence {yi}∞i=1 ⊆ E0−H , which

cannot happen by Lemma 2.2. This finishes the proof.

We complete this section by showing that for locally finite Leavitt path alge-

bras, the property of being graded just infinite implies, in fact, that the algebra

is just infinite. To do so, we prove a general result about all Z-graded algebras.

By [12, Lemma 1.3(d)], if A is a locally finite positively Z-graded algebra

(i.e. An = {0} for all n < 0), then A is just infinite in case it is graded just

infinite. We extend this result to all Z-graded algebras. Our approach is largely

based on an idea presented by D. Rogalski in a private communication.

Proposition 2.5: Let A be a locally finite Z-graded K-algebra. Then A is

graded just infinite if and only if A is just infinite.

Proof. Suppose that the algebra A is graded just infinite, and let L be a nonzero

ideal of A. We note that the quotient algebra A/L is generated by homogeneous

elements as a K-vector space. Pick any nonzero element x ∈ L, and write

x =
∑n

i=m xi, with xi ∈ Ai, and xm, xn 6= 0. In particular, x ∈
⊕n

i=mAi.

Since AxnA is a nonzero graded ideal of A, by hypothesis AxnA has finite

codimension in A, so that there exists r ∈ N such that Ai ⊆ AxnA for every

i ∈ Z having |i| > r. Analogously, there exists s ∈ N such that Ai ⊆ AxmA for

every i ∈ Z having |i| > s. Define p = max{r, s, n−m}. We show that A/L is

in fact generated by elements of the form {yi : yi ∈ Ai,−p ≤ i ≤ p}. As A is

locally finite, this will yield the desired result.

For any j > p consider yj ∈ Aj . Then yj ∈ AxnA, so we can write yj =
∑

t aσt
xnbτt

with aσt
∈ Aσt

and bτt
∈ Aτt

. Note that σt +n+τt = j. For each i

with m ≤ i ≤ n define cj−n+i =
∑

t aσt
xibτt

, and then define z =
∑n

i=m cj−n+i.

Then z =
∑

t aσt
xbτt

, so z ∈ L. Therefore in A/L we have yj = −(z − yj). But

z−yj has homogenous components of degree j−(n−m) through j−1. Therefore,
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since j > n−m, all these degrees are positive. Thus, modulo L, we have written

yj as the sum
∑j1

i=q1
ci, where ci ∈ Ai, each i is positive, and j1 < j.

If j1 < p we stop. If not, repeat the above process on cj1 . Specifically, we are

able to express cj1 as a sum of homogeneous components of degree less than j1,

but all of them positive.

In this way, after at most j − p steps, we will have written yj (modulo L)

as a sum of homogeneous elements of positive degree less than p. That is,

(Aj + L)/L ⊆
⊕p

i=1(Ai + L)/L for all j > p.

A completely analogous argument yields that for any j < −p we have

(Aj+L)/L ⊆
⊕−1

i=−p(Ai+L)/L. This then yields that A/L⊆
⊕p

i=−p(Ai+L)/L.

Since each Ai is finite dimensional, we are done.

As an easy consequence of Proposition 2.5, we get the following well-known

result (see, e.g., [7]). The algebras which appear in this result will play a central

role in the sequel.

Corollary 2.6: Let K be a field, and let A denote the Laurent polynomial

ring A = K[x, x−1]. Then for any n > 0 the matrix ring Mn(A) is just infinite.

Proof. As dimK(Ai) = 1 for all i ∈ Z, A is locally finite. Since every nonzero

homogeneous element of A is invertible, A is graded simple, so is, in particular,

graded just infinite. Now apply Proposition 2.5 to conclude that A is just

infinite. Since matrix rings over just infinite rings are again just infinite (see

e.g. [7, Lemma 1(i)]) we are done.

Theorem 2.4 together with Proposition 2.5 now immediately yield the result

about locally finite just infinite Leavitt path algebras which was mentioned in

the introduction.

Theorem 2.7: Let E be a graph such that LK(E) is infinite dimensional and

locally finite. Then the following conditions are equivalent:

(i) LK(E) is graded just infinite.

(ii) E is cofinal.

(iii) LK(E) is graded simple.

(iv) LK(E) is just infinite.

As noted previously in Example 2.1, the local finiteness condition on E (which

implies the finiteness of E) cannot be dropped in Theorem 2.7.
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3. Explicit graph-theoretic and algebraic descriptions of locally finite

Leavitt path algebras, and of locally finite just infinite Leavitt path

algebras

In this final section of the article we achieve three goals. First, we describe

concretely the graphs which arise in Theorem 2.7. Consequently, we obtain

the isomorphism classes of the locally finite just infinite Leavitt path algebras

(Theorem 3.3). Building on these ideas, we are able to describe the isomorphism

classes of all locally finite Leavitt path algebras (Theorem 3.8). As a result,

we conclude in Theorem 3.10 that the locally finite Leavitt path algebras are

precisely the noetherian Leavitt path algebras.

Definition 3.1: We say that a graph E is a Cn-comet if it is finite, has exactly

one cycle Cn (this unique cycle contains n vertices), and T (v) ∩ (Cn)0 6= ∅ for

every vertex v ∈ E0.

Proposition 3.2: The Leavitt path algebra LK(E) is locally finite just infinite

if and only if E is a Cn-comet.

Proof. Suppose that E is a Cn-comet. By hypothesis, E is finite and contains

a cycle. Then LK(E) is infinite dimensional. Locally finiteness follows from the

fact that the cycle Cn has no exits and an application of Theorem 1.8.

Now let v ∈ E0, and consider the hereditary and saturated closure {v}. By

hypothesis we have (Cn)0 ∩ {v} 6= ∅, and also by hereditariness (Cn)0 ⊆ {v}.

Just suppose that {v} 6= E0. Then take y1 6∈ {v}. As E is a Cn-comet we get

{v} ∩ T ({y1}) 6= ∅. Since y1 6∈ {v}, we can then find a path ν = ν1 . . . νn with

n ≥ 1 such that s(ν) = y1, r(ν) ∈ {v} but r(νi) 6∈ {v} for i < n. If we focus

on s(νn), since {v} is saturated and s(νn) 6∈ {v}, there must exist e ∈ E1 with

r(e) 6∈ {v} and s(e) = s(νn). We claim that r(e) 6= s(νi) for every i = 1, . . . , n.

Otherwise, if r(e) = s(νi) for some i, then s(νi) 6∈ V0 as the path given by

νiνi+1 . . . νn−1e is a closed path based at this vertex, but then that would imply

the existence of a cycle contained in E0 − {v}, contradicting the fact that Cn

is the only cycle in E.

Rename this newly obtained vertex r(e) by y2. In particular y1 6= y2. Repeat

the process with y2 so that we can find a path δ = δ1 . . . δm with m ≥ 1 such

that s(δ) = y2, r(δ) ∈ {v} and r(δi) 6∈ {v} for i < m. Once more, there exists,

by the saturation of {v}, an edge f ∈ E1 with r(f) 6∈ {v} and s(f) = s(δm).

Not only do we have r(f) 6= s(δi) for all i = 1, . . . ,m as before, but also
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r(f) 6= s(νi) for i = 1, . . . , n. (If, for instance, we have r(f) = s(ν1) = y1, then

ν1 . . . νn−1eδ1 . . . δm−1f is a closed path based at r(f) 6∈ {v}, a contradiction

again).

Write then y3 = r(f), so that in particular we have y3 6= y1, y2. In this way

we obtain an infinite sequence {yi}∞i=1 ⊆ E0−{v}, which cannot happen as E is

finite. Now [5, Lemma 2.8] applies to yield the cofinality of E. Now, Theorem

2.7 finishes the proof.

Conversely, since LK(E) is locally finite, we have in particular that E is

finite. But since LK(E) is just infinite we have in particular that LK(E) is

infinite dimensional, so that by [3, Corollary 3.6] we have that E contains a

cycle Cn. Consider the case v /∈ (Cn)0. Use Theorem 2.7 to receive that E

is cofinal, and by [5, Lemma 2.8], {v} = E0. Let t denote the smallest non-

negative integer having Λt({v}) ∩ (Cn)0 6= ∅. Pick w in this intersection. If

t > 0, then Λt−1({v}) ∩ (Cn)0 = ∅, and therefore ∅ 6= r(s−1(w)) ⊆ Λt−1({v}).

In particular, Λt−1({v}) ∩ (Cn)0 6= ∅, a contradiction, so t must be zero, thus

T ({v}) ∩ (Cn)0 6= ∅. This also shows that Cn is the only cycle, because the

existence of any other cycle in E would necessarily yield an exit for Cn, which

cannot happen by Theorem 1.8.

Theorem 3.3: Let E be a graph for which LK(E) is locally finite just infinite.

Let C denote the unique cycle in E, and let v be any vertex in C. Then

LK(E) ∼= Mn(K[x, x−1]),

where n is the number of paths in E which do not contain C, and which end in

v. In particular, LK(E) ∼= LK(Cn).

Proof. By Proposition 3.2 there is an integer m so that graph E is a Cm-comet,

so that C = Cm is the unique cycle in E. Let e1, . . . , em and v1, . . . , vm be

respectively the edges and the vertices of the cycle Cm. That is: r(ei) = vi for

all i, s(ei) = vi−1 for i > 1, and s(e1) = vm. We eliminate the edge e1 in the

graph E, and denote the resulting graph by F .

Let P = {pi : 1 ≤ i ≤ n} denote the set of all paths which end in vm, and

which do not contain the cycle Cm. That is, pi’s are the paths in F ending in

vm, or with the notation used in [3], pi’s are the paths in R(vm). Since E is a

Cm-comet graph, the graph F is finite and acyclic, so that |P | = n is indeed

finite.



Vol. 165, 2008 LOCALLY FINITE LEAVITT PATH ALGEBRAS 343

Consider the set B = {pic
kp∗j}i,j∈{1,...,n},k∈Z, where c = e1 . . . em is the cycle

Cm. (We use the notation ck = (c∗)−k for negative k, and that c0 = vm. Note

that these conventions are possible as the usual rules for exponents are valid

here, due to the fact that the cycle Cm has no exits.)

We claim that B is a basis of LK(E) as a K-vector space. To this end, we

first consider the inclusion map from F to E. This map is a complete graph

homomorphism (see [4, p. 5]), and therefore induces aK-algebra homomorphism

ϕ : LK(F ) → LK(E) by [4, Lemma 2.2] since the relations (1) through (4) in

LK(F ) are preserved by ϕ. Moreover, F has vm as its only sink, as every other

vertex connects to the cycle Cm and therefore to vm.

Thus, by [3, Proposition 3.5], LK(F ) is simple and therefore ϕ is a monomor-

phism. If fact, it was shown in [3, Proof of Lemma 3.4] that

{pip
∗
j}i,j∈{1,...,n} is a set of matrix units such that p∗i pj = δijvm. We trans-

late this information via the monomorphism ϕ to get the analogous relations in

LK(E).

Suppose now that x =
∑

i,j,k αijkpic
kp∗j = 0 for αijk ∈ K. Then for arbitrary

i0, j0 we have that 0 = p∗i0xpj0 =
∑

i0,j0,k αi0j0kc
k, which then gives αi0j0k = 0

for all k ∈ Z, as powers of the cycle are linearly independent in LK(E). This

shows that B is a linearly independent set.

On the other hand, we realize that the set Y = {pip
∗
j} ∪ {e1, e∗1} generates

LK(E) as a K-algebra (to show this it is enough to consider that LK(F ) is

generated as a K-algebra by {pip
∗
j} and apply the monomorphism ϕ). Clearly,

Y ⊆ B (for instance, e1 = c(e2 . . . em)∗ ∈ B). Moreover, B is closed under prod-

ucts with the general formula (pic
kp∗j)(prc

tp∗s) = δjrpic
k+tp∗s. Thus, we have

proved that B is a generator set of LK(E) as a K-vector space, and therefore,

a basis.

Finally, define the map φ : LK(E) → Mn(K[x, x−1]) on the basis by set-

ting φ(pic
kp∗j ) = xkeij (where eij denotes the standard (i, j)-matrix unit), and

extend linearly to all of LK(E). This map is a K-algebra homomorphism as

we have φ((pic
kp∗j )(prc

tp∗s)) = φ(δjrpic
k+tp∗s) = δjrx

k+teis = (xkeij)(x
ters) =

φ(pic
kp∗j )φ(prc

tp∗s). It is bijective as it maps a basis of LK(E) to a basis of

Mn(K[x, x−1]). Therefore it is the desired isomorphism.

As a specific consequence of Theorem 3.3 we can complete the n = 1 case of

[2, Proposition 13] .
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Corollary 3.4: Let En
1 denote the graph with n vertices and n edges

• // • // • • // • ee

Then LK(En
1 ) ∼= Mn(K[x, x−1]).

Remark 3.5: It turns out that two nonisomorphic Cm-comets can give rise to iso-

morphic Leavitt path algebras, although this isomorphism need not be graded.

For example, consider the C1-comet graph E and C2-comet graph F given by

E ≡ •u
f

// •v e
vv

F ≡ •a

x

CC•
b

y

��

Theorem 3.3 yields that each is isomorphic to M2(K[x, x−1]). However, these

two Leavitt path algebras cannot be isomorphic as graded algebras, since one

can check that LK(E)0 is generated as a K-vector space by the linearly indepen-

dent set {u, v, ef∗, fe∗}, while LK(F )0 is generated by the linearly independent

set {a, b}, so that dimK LK(E)0 6= dimK LK(F )0.

Corollary 3.6: For n, n′ ∈ N we have that LK(Cn) ∼= LK(Cn′) if and only if

n = n′.

Proof. Since K[x, x−1] is a commutative ring, we may apply [9, Exercise 14,

p. 480] together with Theorem 3.3 to get the result.

The corollary in turn gives the following complete classification of the locally

finite just infinite Leavitt path algebras.

Corollary 3.7: A complete irredundant set of the isomorphism classes of

locally finite just infinite Leavitt path algebras is given by

{Mn(K[x, x−1]) : n ∈ N}.

Having described the locally finite just infinite Leavitt path algebras, we

are now in position to describe all locally finite Leavitt path algebras. As a

consequence of the following theorem, we will see two things. First, that the

class of locally finite Leavitt path algebras consists precisely of finite direct

sums of locally finite just infinite Leavitt path algebras with finite dimensional

Leavitt path algebras. Second, that the locally finite Leavitt path algebras are

precisely the noetherian Leavitt path algebras.
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Theorem 3.8: Let E be a graph such that LK(E) is a locally finite algebra.

Then LK(E) is isomorphic to

( l
⊕

i=1

Mmi
(K[x, x−1])

)

⊕

( l′
⊕

j=1

Mnj
(K)

)

,

where: l is the number of cycles in E (call them c1, . . . , cl), mi is the number of

paths ending in a fixed (although arbitrary) vertex vmi
of the cycle ci which do

not contain the cycle itself (for 1 ≤ i ≤ l); l′ is the number of sinks in E (call

them wl+1, . . . , wl+l′ ), and for every j ∈ {1, . . . , l′}, nj is the number of paths

ending in the sink wl+j .

Proof. Let Λi be the set of paths in E ending in a fixed vertex vmi
of the cycle

ci which do not contain ci. Write ci = ei
1 . . . e

i
mi

and c0i = {vi
1, . . . , v

i
mi

}, where

r(ei
k) = vi

k for all k, s(ei
1) = vi

mi
and s(ei

k) = vi
k−1 for all k ≥ 1.

We pull out the edges ei
1 in the graph E to obtain a new graph, which we

denote by F .

For a sink wj with j = l+ 1, . . . , l+ l′, let Λj be the set of paths of E ending

in the sink wj . Let Λ =
⋃

Λi′ = {pj′}. Consider

X = {prc
k
t p

∗
s : k ∈ Z; r, s = 1, . . . , card(Λ); t = 1, . . . , l + l′},

where for t > l we let ct denote wt, w
k
t denote wt for all k ∈ Z, and ckt denote

(c∗t )
−k for k < 0, t ∈ {1, . . . , l}.

Let B be the set of all nonzero elements in X . Note that an element prc
k
t p

∗
s

is in B if and only if pr, ps ∈ Λt for t ∈ {1, . . . , l + l′}.

We claim that B is a basis for LK(E) as a K-vector space. To show this,

define the inclusion map ϕ : LK(F ) → LK(E) in the natural way. It is a well-

defined homomorphism because the relations (1)–(4) in LK(F ) are consistent

with those in LK(E). To show that ϕ is a monomorphism, we produce a left

inverse.

Define ψ : LK(E) → LK(F ), first on generators, by setting

ψ(ei
1) = (ei

mi
)∗ . . . (ei

2)
∗ and ψ(x) = x for every x 6= ei

1

and then extending to all of LK(E). It is long, but straightforward, to check

that ψ is well-defined, and ψϕ = 1LK(F ).

Following [3, Lemma 3.4 and Proposition 3.5], we have that the elements

in the set {pip
∗
j : pi, pj ∈ Λt, for an arbitrary t} are a set of matrix units

in Iv, for v ∈ {wl+1, . . . , wl+l′} ∪ {vi
mi
, i = 1, . . . , l}. Hence their union,
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call it Γ, generates LK(F ). Applying the monomorphism ψ we obtain that

Y = Γ ∪ {ei
1, (e

i
1)

∗, i = 1, . . . , l} generates LK(E) as a K-algebra. Clearly

Y ⊆ B, and Y is closed under products because the general formula

(pic
k
σp

∗
j )(prc

t
τp

∗
s) = δστ δjrpic

k+t
σ p∗s

holds. It can be shown, as in the proof of Theorem 3.3, that B is a linearly

independent set.

Finally, define φ as the K-linear extension of:

LK(E) −→

( l
⊕

i=1

Mmi
(K[x, x−1])

)

⊕

( l′
⊕

j=1

Mnj
(K)

)

Λk − {0} ∋ pic
t
kp

∗
j 7−→

{

xtpip
∗
j for k = 1, . . . , l

pip
∗
j for k = l + 1, . . . , l + l′

This map is a K-algebra homomorphism, and is in fact an isomorphism

because it sends a basis of LK(E) to a basis of
(

⊕l
i=1 Mmi

(K[x, x−1])
)

⊕
(

⊕l′

j=1 Mnj
(K)

)

.

The description of the locally finite Leavitt path algebras given in Theorem

3.8 yields the final two results of this article.

Corollary 3.9: The class of locally finite Leavitt path algebras consists pre-

cisely of finite direct sums of locally finite just infinite Leavitt path algebras

and finite dimensional Leavitt path algebras.

Proof. If LK(E) is locally finite, then by Theorem 3.8 we have

LK(E) ∼=

( l
⊕

i=1

Mmi
(K[x, x−1])

)

⊕

( l′
⊕

j=1

Mnj
(K)

)

.

The result now follows from Theorem 3.3 and [3, Corollary 3.7].

Theorem 3.10: For a graph E and field K the following conditions are equiv-

alent:

(i) LK(E) is locally finite.

(ii) LK(E) is left or right noetherian.

(ii)′ LK(E) is left and right noetherian.

(iii) E is finite and has Condition (NE).
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Proof. (i) =⇒ (ii)′. It is well-known that A = K[x, x−1] is a left and right

noetherian ring, and hence so is any finite matrix ring over A. Now the result

follows directly from Theorem 3.8.

(ii) =⇒ (iii). It is clear that E must be finite. Suppose to the contrary that

there exists a cycle in E with an exit e. Denote s(e) by v, and let µ denote the

cycle based at v. We claim that

{0} ⊂ LK(E)(v − µµ∗) ⊂ LK(E)(v − µ2(µ∗)2) ⊂ · · ·

is a properly increasing sequence of left ideals of LK(E). The containment

LK(E)(v − µi(µ∗)i) ⊂ LK(E)(v − µi+1(µ∗)i+1)

for each i ≥ 0 follows from the easily checked equation

v − µi(µ∗)i = (v − µi(µ∗)i)(v − µi+1(µ∗)i+1).

To show that the containments are proper, we show that v − µi+1(µ∗)i+1 6∈

LK(E)(v − µi(µ∗)i). On the contrary, if v − µi+1(µ∗)i+1 = α(v − µi(µ∗)i) for

some α ∈ LK(E), then multiplying on the right by µi would give µi −µi+1µ∗ =

α(µi − µi) = 0, so that µi = µi+1µ∗, which gives µie = µi+1µ∗e. But this is

impossible, as follows. Since s(e) = r(µ) = v we have µie 6= 0 in LK(E). But

since e is an exit for µ we have µ∗e = 0, so that µi+1µ∗e = 0, a contradiction.

(iii) =⇒ (i) follows from Theorem 1.8.
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