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ABSTRACT

A group-graded K-algebra A = @geG Ay is called locally finite in case
each graded component Ay is finite dimensional over K. We characterize
the graphs E for which the Leavitt path algebra L (F) is locally finite in
the standard Z-grading. For a locally finite Z-graded algebra A we show
that, if every nonzero graded ideal has finite codimension in A, then every
nonzero ideal has finite codimension in A; that is, Z-graded just infinite
implies just infinite. We use this result to characterize the finite graphs
E for which the Leavitt path algebra Lg (F) is locally finite just infinite.
We then give an explicit description of the graphs and algebras which
arise in this way. In particular, we show that the locally finite Leavitt
path algebras are precisely the noetherian Leavitt path algebras.
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Throughout this article K will denote a field. As in [8], we say that a K-
algebra B is just infinite dimensional (or, more concisely, just infinite) in
case dimg (B) is infinite, but dimg(B/I) is finite for every nonzero ideal I of
B. We say that a Z-graded K-algebra A = @, ., An is locally finite in case
dimg (A,) < oo for every n € Z.

For a graph E and a field K, the Leavitt path algebra Lk (E), and its analytic
counterpart the Cuntz—Krieger graph C*-algebra C*(E), have been the focus
of much recent attention (see, e.g., [1], [4], [6], and [11]). After presenting a
brief overview of this topic, in Section 1 we classify those graphs E for which
the Leavitt path algebra Lx (F) is locally finite (Theorem 1.8). With a general
result about Z-graded algebras in hand, in Section 2 we then find those finite
graphs for which L (FE) is locally finite just infinite (Theorem 2.7). In the
final section we describe explicitly those K-algebras which arise in this way.
Specifically, in Theorem 3.3, we describe all locally finite just infinite Leavitt
path algebras, and then in Theorem 3.8, we describe all locally finite Leavitt
path algebras.

Of course, any finite dimensional algebra is necessarily locally finite. Thus
the work presented in the current article can be viewed as a logical followup to
[3], in which the authors completely classify the finite dimensional Leavitt path
algebras.

1. Locally finite Leavitt path algebras

The Leavitt path algebra of a graph is defined in [1]. We briefly recall the es-
sentials here. A (directed) graph E = (E°, E',r, s) consists of two countable
sets £V, E' and maps r,s : E' — E9. The elements of E° are called vertices
and the elements of E' edges. If s71(v) is a finite set for every v € E°, then the
graph is called row-finite. Throughout this paper we will be concerned only
with row-finite graphs. If EY is finite then, by the row-finite hypothesis, E*
must necessarily be finite as well; in this case we say simply that F is finite.
A vertex which emits no edges is called a sink. A path p in a graph F is a
sequence of edges 1 = e7 ... e, such that r(e;) = s(e;41) fori=1,...,n—1. In
this case, s(p) := s(ey) is the source of p, r(u) := r(e,) is the range of u, and
n is the length of u. For n > 2 we define E™ to be the set of paths of length
n, and E* =, E™ the set of all paths.
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We define the Leavitt path K-algebra Lk (F) as the K-algebra generated
by a set {v : v € EY} of pairwise orthogonal idempotents, together with a set
of variables {e,e* : e € E'}, which satisfy the following relations:

(1) s(e)e =er(e) =e forall e € E*.
(2) r(e)e* =e*s(e) =e* forall e € EL.
(3) e*e’ = e er(e) for all e, e’ € EL.
(4) v="> (cer|s(e)=v) €€" for every v € E° that emits edges.

The elements of E! are called real edges, while for e € E! we call ¢* a ghost
edge. The set {e* : ¢ € E'} will be denoted by (E')*. We let r(e*) denote
s(e), and we let s(e*) denote r(e). If u=-e;...e, is a path, then we denote by
u* the element e} ...ef of L (E).

It is sometimes helpful to look at Lk (F) in the following way. If we start
with a graph E, we can form a new graph E having the same vertex set as
E, but in which, for each edge e of E, we add an edge e* whose orientation is
opposite to that of e. Next we form K E, the (now-standard) path algebra of
E with coefficients in K. Finally, Lx (E) can be viewed as the quotient of K E
modulo the two sided ideal generated by the relations described in (3) and (4)
above.

While Lg (FE) arises as the quotient of a path algebra, in general these Leavitt
path algebras have properties which are not found in the usual path algebra con-
struction. For instance, the class of Leavitt path algebras includes the algebras
described by Leavitt in [10]. These algebras (denoted A = Li(1,n), for each
n > 2) have the property that A 22 A™ as free left A-modules; in particular, they
do not possess the Invariant Basis Number property, and so intuitively should
be thought of as being “far” from possessing any sort of chain condition. In
the more general context of Leavitt path algebras, the Leavitt algebra Ly (1,n)
arises as the algebra Ly (E), where E is the “rose with n petals” graph

On the other side of the structural spectrum, the full n x n matrix ring over K
arises as the Leavitt path algebra of the oriented n-line graph

ey es €n—1
oVl > @U2 — > @U3 i oVn—1 — > ¢¥Un
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while the Laurent polynomial ring K[x,z~!] arises as the Leavitt path algebra
of the “one vertex, one loop” graph

(3 D @

In [3] the authors determine completely the structure of the finite dimensional
Leavitt path algebras. It is the goal of the current article to extend these results
to the locally finite Leavitt path algebras.

Note that if E is a finite graph then we have ZUGEU v = 1; otherwise, by
[1, Lemma 1.6], Lx(F) is a ring with a set of local units consisting of sums
of distinct vertices. Conversely, if Ly (F) is unital, then EY is finite. For any
subset H of E°, we will denote by I(H) the ideal of L (E) generated by H.

It is shown in [1] that Lg(E) is a Z-graded K-algebra, spanned as
a K-vector space by {pg* : p,q are paths in E}. In particular, for each
n € Z, the degree n component Ly (E), is spanned by elements of the form
{pq* : length(p) — length(q) = n}. The degree of an element x, denoted deg(x),
is the lowest number n for which x € @,,.,, Lk (). The set of homoge-
nez L (E)y, and an element of Lk (E), is said to be
n-homogeneous or homogeneous of degree n.

neous elements is |

The K-linear extension of the assignment pg* — ¢p* (for p,q paths in E)
yields an involution on Ly (FE), which we denote simply as *. Clearly,
(Lx(E)p)* = Lg(E)—, for alln € Z.

We will analyze the structure of various graphs in the sequel. An important
role is played by the following three concepts. An edge e is an exit for a path
1= e7...ey, if there exists ¢ such that s(e) = s(e;) and e # ¢;. If p is a path
in E, and if v = s(p) = r(u), then u is called a closed path based at v. We
denote by CPg(v) the set of closed paths in E based at v. If s(u) = r(u) and

s(e;) # s(ej) for every i # j, then p is called a cycle.

Definition 1.1: We say that a graph F satisfies Condition (NE) if no cycle in F
has an exit.

Of course the one vertex, one loop graph satisfies Condition (NE). More
generally, a graph containing one loop together with any number of paths having
range equal to the vertex of the loop, but in which no path has source equal to
the vertex of the loop, satisfies Condition (NE).
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LEMMA 1.2: If a finite graph E satisfies Condition (NE) then every path in E
of length at least card(E®) ends in a cycle.

Proof. Clearly a path u of length greater than card(E®) contains a closed path
v=ep...e.. Since F satisfies Condition (NE), then v must be in fact a cycle;
moreover  necessarily ends in es...e,....es_1 for some s € {1,...,r} because
this cycle has no exits. |

Let n € Z. For m € N with n < m, we let C], denote the following subset of
the graded component Lk (E), of Lk (E):

Cp.={pq": pe E™,qe E™"}.
For n > m, define C, = 0.

LEMMA 1.3: Letn € Z. If there existst € N, t > n, such that C’,; C U§:1 cr,
then | J3°, O = Ji_, C.

Proof. Suppose C}; C UZ:1 C?. By induction on r, we show that for every
reN, Cp, C UZ:1 Cf'. The case r = 1 is our hypothesis. Suppose C{,, ; C
UL, C, and consider p = err€iyr1-..€1ff ... Jtonir 1 fingr € C1 o If
we define v = eqqr_1...e1f7 .. finir1 € Cf iy, then p = e v ff €
eeir Ol finir C eorr(Uis COinsr CUS CF C UL O

We are now in position to obtain the main result of this section.

THEOREM 1.4: For a finite graph E the following conditions are equivalent:

(i) L (E), has infinite dimension for some n € Z.
(i) Lk (E), has infinite dimension for every n € Z.
(iii) There exists a cycle in E with an exit.

Proof. (ii) = (i) is obvious.

(i) = (iii). Let n € Z be such that Lk (E), has infinite dimension. Suppose
that no cycle has an exit. Let ¢ = max(n, card(E?)). We show that C%,,, C
UL cr.

Let v be a nonzero element in C3, , |, say v = ey ...eat41 7 ... fo;_pni1- Then,
by Lemma 1.2, r(ezt11) is in a cycle ¢. By noting that 2t—n+1=t+t—n+1>
t+1 > card(E®), Lemma 1.2 can be applied to fa;—ni1 ... f1, so that f; must
belong to a cycle d. Moreover, since v # 0 and FE satisfies Condition (NE),
¢ = d and therefore ez11 = f1 (by Condition (NE) again). This yields that
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v € C%,, since Condition (NE) implies that ear1 f; = s(ezt11) (by relation (4)).
Now, since [ J;-, CI is a generating set for L (E)y, by Lemma 1.3 we obtain a
contradiction and finish the proof.

(iii) = (ii). Let f be an exit for a cycle ¢ and suppose that v := s(f) = s(c).
Let k = deg(c), and write ¢ = e ...e;. Consider n > 0 and decompose n =
bk + s, with 0 < s < k. We claim that {e,...e1ct¢"(c*)" : v € N} is a linearly
independent set in L (E),. Indeed, suppose > _. ke, ...e1c%c"(c*)" = 0 for
k. € K with k; # 0. Multiply on the left by (c*)!(c*)be%...eZ, and on the
right by ¢, to get kv + > 1, k¢" " (¢*)""" = 0 (apply [1, Lemma 2.2]).
Since f is an exit for ¢, we obtain 0 = k; f*v + Z:}:Hl kpf*c"=H(e*) = ki f*,
a contradiction. The case n < 0 can be obtained by using the involution:
since Lg (E), = (Lx(E)_y)*, then dimg (Lk(E),) = dimg (Lx(E)—n)*) =
dimK(LK(E),n) = 0. |

Remark 1.5: The finiteness hypothesis on E in the preceding result cannot
be dropped. For instance, if E is an acyclic graph with infinitely many ver-
tices and only a finite number of edges, then dimg(Lx(F)g) = oo, while
dimg (Lg(F)n) = 0 for any sufficiently large n. In general this happens for
any infinite graph such that E™ = () for some n € N.

Remark 1.6: As a consequence of the previous result, for a finite graph F, if
one homogenous component of the Leavitt path algebra Lx(F) has infinite
dimension then all the homogenous components have that same (necessarily
countably infinite) dimension. However, in case the homogeneous components
have finite dimension, the dimension of the components can differ. Of course
any nontrivial finite dimensional Leavitt path algebra will have this property
(see, e.g., [3]). For an infinite dimensional but locally finite example of this
phenomenon, consider the Leavitt path algebra of the graph F

g
[ > v
[ ] [ ] €
f

Using Lemma 1.3, a straightforward computation yields dimg (Lx (F)o) = 8,
dimg (Lg(F)1) = dimg(Lg(E)-1) = 9, and dimg (Lx(E),) = 3 for all n
having |n| > 2.

The following Lemma will be useful throughout the sequel, and will be used
often without explicit mention.
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LEMMA 1.7: If Li(F) is a locally finite Leavitt path algebra, then E is finite.

Proof. If E were not finite, then E° would yield an infinite set of linearly inde-
pendent elements of Ly (E)g. |

With this lemma, Theorem 1.4 gives the following.

THEOREM 1.8: For a graph F and any field K the following are equivalent:
(i) Li(E) is locally finite.
(ii) E is finite and has Condition (NE).

We end this section by identifying the locally finite simple Leavitt path alge-
bras.

COROLLARY 1.9: Let Lix(E) be a locally finite Leavitt path algebra. Then
Lk (E) is simple if and only if Lx(E) = M, (K) for some positive integer n.

Proof. By Theorem 1.8 we have that E is finite and has Condition (NE). On
the other hand, by [1, Theorem 3.11], F has also Condition (L), therefore E is
an acyclic graph. Now using [3, Proposition 3.5], Lx (F) = @221 M, (K). But
Lk (F) being simple implies the desired result. ]

2. Locally finite just infinite Leavitt path algebras.

Having identified the locally finite Leavitt path algebras in the previous section,
we now determine which of these algebras are in fact just infinite.

As we show in the following example, a graded just infinite Leavitt path
algebra need not be just infinite. To demonstrate this, we need some additional
information about various subsets of vertices of a graph. We define a relation >
on E° by setting v > w if there is a path p € E* with s(u) = v and r(u) = w.
A subset H of E° is called hereditary if v > w and v € H imply w € H. A
hereditary set is saturated if every vertex which feeds into H and only into H
is again in H, that is, if s71(v) # 0 and r(s~'(v)) € H imply v € H. Denote
by H (or by Hg when it is necessary to emphasize the dependence on F) the
set of hereditary saturated subsets of E°.

Example 2.1: The Leavitt path algebra L (F) of the following graph F
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is a graded simple (and therefore graded just infinite) K-algebra, but is not just
infinite, as follows.

It is straightforward to show that the only hereditary and saturated subsets
of E? are ) and E°. Thus [4, Theorem 6.2] applies, and we conclude that L (E)
is graded simple (i.e., the only graded ideals of L (FE) are {0} and Lk (F)). In
particular, Li (E) is graded just infinite.

We now show that there are ideals in Lk (FE) of infinite codimension, specifi-
cally, the ideal T := (v+e) is such. We start by showing that v ¢ I. Suppose on
the contrary that v € I. Then there exist monomials a; and b; in Li(E), and
scalars k; € K such that v = ), k;a;(v+e)b;. With the use of the last equation
and the fact that v(v+e)v = v+ e we can assume that va;,v = a; and vb;v = b;.
Let a denote any element of the form a = a; or b;. Write a = of*, where «a, 8
are paths of arbitrary length (they can be of length zero, that is, a vertex). As
« is a monomial we necessarily have that v is a local unit for o on the right,
so that @ = av(*. In this situation we have vav = o and vB8*v = (%, so that,
a,3 € CP(v). But it is clear that in E we have CP(v) = {¢¥ : k > 0}. Thus
a = e™(e*)™ for some n,m > 0. Moreover, since e has no exits, then a = e™ or
a = (e*)™, where n € N.

A similar equation holds for all the monomials a; and b;, so that we
get v = >, kie™ (v + e)e™ with m; and n; € Z (where for r < 0 we in-
terpret ¢ as (e*)”"). Then v = >, k;(e™i™" 4 ¢mitmitl)  Rewrite v as
v=>7" ki(e"+eT). A degree argument on the highest and on the lowest
power of the right hand side shows s + 1 = 0 and » = 0, a contradiction since
r < s. We conclude that v ¢ I.

Now, consider the infinite set of vertices {v;}. We claim that {v;}; is a lin-
early independent set in Li(E)/I. Suppose otherwise, that for some scalars
ki,...,km € K, and some vertices v;,,...,v;,, T = Z;nzl kjv;; € I. Con-
sider w = vy; € {viy,...,v;, }, with k; # 0. Then v = i Ity =
i fiwfiy .o fi = k;j_lff - fiwzwfi; ... fi € I, contrary to the result of
the previous paragraph.

Here is some additional useful information about graphs. If i is a path having
v =s(u) =r(u) and s(u;) # v for every i > 1, then p is called a closed simple
path based at v. We denote by CSPg(v) the set of closed simple paths
in E based at v. For a path u we denote by u® the set of its vertices, i.e.,
{s(p1),r(i) :i=1,...,n}. For a graph E, we let V denote the set of vertices
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which do not lie on any cycle (see [2]), i.e.
Vo ={ve E’: CSP(v) = 0}.
For an H € H, the quotient graph of E by H is given by
E/H = (E°—H,{e€ E' :r(e) € H},v|(5/my. S| (B/mn)-

LEMMA 2.2: If Lg(F) is a graded just infinite Leavitt path algebra and
() # H € H then E° — H is a finite set and E° — Vy C H.

Proof. If E° — H were infinite then E/H would contain infinitely many ver-
tices and Li(E/H) would be infinite dimensional but, by [5, Lemma 2.3 (1)],
Lx(E/H) = Lg(FE)/I(H) with I(H) a nonzero graded ideal of Lk (FE), which
is impossible by the hypothesis.

Suppose now that there exists v € (E° — Vp) — H, that is, there exists a
cycle i based at v € H. As H is hereditary, u° N H = (. If we write p =
U1 ..., then u; € E/H as r(u;) ¢ H. Thus E/H completely contains the
cycle p, and therefore again Lk (F/H) is infinite dimensional, contrary to the
hypothesis. |

LEMMA 2.3: Let Li(E) be a graded just infinite Leavitt path algebra. If
H, H' € H are nonempty, then the intersection H N H' is nonempty.

Proof. Since Ly (E) is infinite dimensional, by [3, Corollary 3.6], either EV is
infinite or F is not acyclic. In the first case, apply Lemma 2.2 to obtain that
both E° — H and E° — H' are finite. Now if H N H' = ), then H C E° — H',
and therefore both H and E° — H are finite sets, which cannot happen when E°
is infinite. Now, if F is not acyclic, then pick any cycle in F, and let v denote
the vertex at which the cycle is based. But then v € Vj, and again Lemma 2.2
applies to get v € HN H'. |

We denote by E*° the set of infinite paths v = (7,)52; of the graph E and
by E<> the set E> together with the set of finite paths in F whose end vertex
is a sink. We say that a vertex v in a graph E is cofinal if for every v € ES®
there is a vertex w in the path v such that v > w. We say that a graph E is
cofinal if so are all the vertices of E.

The set T'(v) = {w € E° : v > w} is the tree of v, and it is the smallest
hereditary subset of E? containing v. We extend this definition for an arbitrary
set X C EY by T(X) = U,exT(z). The hereditary saturated closure
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of a set X is defined as the smallest hereditary and saturated subset of E°
containing X. It is shown in [4] that the hereditary saturated closure of a set
X is X = U;y An(X), where

(1) Ao(X) = T(X),

(2) An(X) ={y € E°:s7'(y) # 0 and (s~ (y)) € An—1(X)} U Ap_1(X),
for n > 1.

We now have the tools to give a graph-theoretic characterization of all of the
graded just infinite Leavitt path algebras.

THEOREM 2.4: Let Li(E) be an infinite dimensional Leavitt path algebra.
The following conditions are equivalent:

(i) Lx(E) is graded just infinite.
(ii) E is cofinal.
(i) Li(F) is graded simple.

Proof. (ii) = (iii). By [4, Theorem 6.2] the result follows.

(iii) = (i) is evident since by hypothesis Lk (F) is infinite dimensional.

(i) = (ii). If we suppose that F is not cofinal, then by again using [5,
Lemma 2.8] there exists a nontrivial hereditary and saturated subset H of E°.
Let y1 denote a vertex which is not in H, and consider H' = m By Lemma
2.3, HN H' # (). In this case the hereditary saturated closure described above
gives us some minimal n € N with H N A,,({y1}) # 0.

If n > 0, then we have that H N {y € E°: 0 # r(s7*(y)) € Ap_1({v1})} # 0,
since H N Ap—1({y1}) = 0.

Take z € H with @ # r(s7(2)) € Ap—1({v1}). In particular r(s=*(2))NH =
(), which contradicts that H is hereditary.

So n = 0, and therefore H N T'({y1}) # 0. Since y; & H, we can then find
a path v = vy ...y, with n > 1 such that s(v) = y1,7(v) € H but r(v;) € H
for ¢ < m. Since H is saturated and s(vy) = r(vp—1) ¢ H, there must exist
e € E' with r(e) € H and s(e) = s(v,,). We claim that r(e) # s(v;) for every
it =1,...,n; otherwise, if r(e) = s(v;) for some ¢, then s(v;) € V, as the path
given by v;vjy1...v,—1€ is a closed path based at this vertex, which yields a
cycle based at this vertex, but this contradicts, by Lemma 2.2, the fact that
s(vi) ¢ H.

Rename this new vertex r(e) as y2. In particular y; # y2. Repeat the
process with w9, thus yielding a path § = §;...d,, with m > 1 such that
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s(6) = y2,7(0) € H and r(6;) ¢ H for i < m. Once more, there exists,
by the saturation of H, an edge f € E' with r(f) € H and s(f) = s(6m)-
Not only do we have r(f) # s(d;) for all i = 1,...,m as before, but also
r(f) # s(v;) for i = 1,...,n. (Otherwise, if for instance r(f) = s(v1) = y1,
then vy ...vp_1€01 ...0m—1f is a closed path based at r(f) ¢ H, a contradiction
to Lemma 2.2.)

Continuing in this way, we rename r(f) as ys, so that in particular we have
Y3 # y1,Y2. In this way we obtain an infinite sequence {y;}3°; C E° — H, which
cannot happen by Lemma 2.2. This finishes the proof. |

We complete this section by showing that for locally finite Leavitt path alge-
bras, the property of being graded just infinite implies, in fact, that the algebra
is just infinite. To do so, we prove a general result about all Z-graded algebras.
By [12, Lemma 1.3(d)], if A is a locally finite positively Z-graded algebra
(i.e. A, = {0} for all n < 0), then A is just infinite in case it is graded just
infinite. We extend this result to all Z-graded algebras. Our approach is largely
based on an idea presented by D. Rogalski in a private communication.

PROPOSITION 2.5: Let A be a locally finite Z-graded K-algebra. Then A is
graded just infinite if and only if A is just infinite.

Proof. Suppose that the algebra A is graded just infinite, and let L be a nonzero
ideal of A. We note that the quotient algebra A/L is generated by homogeneous
elements as a K-vector space. Pick any nonzero element x € L, and write
r =Y x, with z; € 4;, and @y, z,, # 0. In particular, x € @_  A;.

Since Ax,A is a nonzero graded ideal of A, by hypothesis Az, A has finite
codimension in A, so that there exists » € N such that A; C Az, A for every
1 € Z having [i| > r. Analogously, there exists s € N such that A; C Az, A for
every ¢ € Z having |i| > s. Define p = max{r,s,n —m}. We show that A/L is
in fact generated by elements of the form {7; : y; € A;,—p < i <p}. As A is
locally finite, this will yield the desired result.

For any j > p consider y; € A;. Then y; € Az, A, so we can write y; =
> G, Tpby, with a,, € A,, and b, € A,,. Note that o, +n+7 = j. For each ¢
with m < < ndefine ¢;_p4; = >, as,xibs,, and then define z = Y1 ¢
Then z =, as,2bs,, so z € L. Therefore in A/L we have §; = —(z — y;). But
z—y; has homogenous components of degree j—(n—m) through j—1. Therefore,
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since j > n—m, all these degrees are positive. Thus, modulo L, we have written

y; as the sum Z ¢;, where ¢; € A;, each i is positive, and j; < j.

If 51 < pwe stopf] If not, repeat the above process on c;,. Specifically, we are
able to express ¢;; as a sum of homogeneous components of degree less than ji,
but all of them positive.

In this way, after at most j — p steps, we will have written y; (modulo L)
as a sum of homogeneous elements of positive degree less than p. That is,
(A;+L)/LC P (Ai+ L)/L for all j > p.

A completely analogous argument yields that for any j < —p we have
(A;+L)/L C @l_ﬂ)(A +L)/L. This then yields that A/LC @”__ (A;+L)/L.

Since each A; is finite dimensional, we are done. |

i=—p(

As an easy consequence of Proposition 2.5, we get the following well-known
result (see, e.g., [7]). The algebras which appear in this result will play a central
role in the sequel.

COROLLARY 2.6: Let K be a field, and let A denote the Laurent polynomial
ring A = K|x,x7!]. Then for any n > 0 the matrix ring M,,(A) is just infinite.

Proof. As dimg(A4;) =1 for all i € Z, A is locally finite. Since every nonzero
homogeneous element of A is invertible, A is graded simple, so is, in particular,
graded just infinite. Now apply Proposition 2.5 to conclude that A is just
infinite. Since matrix rings over just infinite rings are again just infinite (see

e.g. [7, Lemma 1(i)]) we are done. |

Theorem 2.4 together with Proposition 2.5 now immediately yield the result
about locally finite just infinite Leavitt path algebras which was mentioned in
the introduction.

THEOREM 2.7: Let E be a graph such that Lk (F) is infinite dimensional and
locally finite. Then the following conditions are equivalent:
(i) Lx(E) is graded just infinite.
(ii) E is cofinal.
(i) Li(F) is graded simple.
v) L

(i

As noted previously in Example 2.1, the local finiteness condition on £ (which

k (F) is just infinite.

implies the finiteness of E') cannot be dropped in Theorem 2.7.
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3. Explicit graph-theoretic and algebraic descriptions of locally finite
Leavitt path algebras, and of locally finite just infinite Leavitt path
algebras

In this final section of the article we achieve three goals. First, we describe
concretely the graphs which arise in Theorem 2.7. Consequently, we obtain
the isomorphism classes of the locally finite just infinite Leavitt path algebras
(Theorem 3.3). Building on these ideas, we are able to describe the isomorphism
classes of all locally finite Leavitt path algebras (Theorem 3.8). As a result,
we conclude in Theorem 3.10 that the locally finite Leavitt path algebras are
precisely the noetherian Leavitt path algebras.

Definition 3.1: We say that a graph F is a C,-comet if it is finite, has exactly
one cycle C,, (this unique cycle contains n vertices), and T'(v) N (Cy,)° # () for
every vertex v € EV.

PROPOSITION 3.2: The Leavitt path algebra Ly (E) is locally finite just infinite
if and only if E is a C),-comet.

Proof. Suppose that E is a C),-comet. By hypothesis, F is finite and contains
a cycle. Then Lk (F) is infinite dimensional. Locally finiteness follows from the
fact that the cycle C), has no exits and an application of Theorem 1.8.

Now let v € E°, and consider the hereditary and saturated closure m By
hypothesis we have (C,,)° N {v} # 0, and also by hereditariness (C,,)° € {v}.
Just suppose that m # E°. Then take 3, & m As FE is a C),-comet we get
{v}NT{y1}) # 0. Since y; & {v}, we can then find a path v = vy ...1, with
n > 1 such that s(v) = y1,7(v) € {v} but r(v;) & {v} for i < n. If we focus
on s(vy), since m is saturated and s(vy,) & m, there must exist e € E! with
r(e) & {v} and s(e) = s(v,). We claim that r(e) # s(v;) for every i =1,...,n.
Otherwise, if r(e) = s(v;) for some i, then s(v;) ¢ Vo as the path given by
ViVit1 - - - Un—1€ is a closed path based at this vertex, but then that would imply
the existence of a cycle contained in E° — m, contradicting the fact that C,
is the only cycle in F.

Rename this newly obtained vertex r(e) by y2. In particular y; # y2. Repeat
the process with ys so that we can find a path 6 = 61 ...d,, with m > 1 such
that s(8) = yo,7(6) € {v} and r(d;) & {v} for i < m. Once more, there exists,
by the saturation of {v}, an edge f € E' with 7(f) & {v} and s(f) = 5(0,n).
Not only do we have r(f) # s(d;) for all i = 1,...,m as before, but also
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r(f) # s(v;) for i = 1,...,n. (If, for instance, we have 7(f) = s(v1) = y1, then
Vi...Vp_1€01...0m—1f is a closed path based at r(f) ¢ ﬁ, a contradiction
again).

Write then ys = r(f), so that in particular we have ys # y1,y2. In this way
we obtain an infinite sequence {y;}$2, C EY — m, which cannot happen as F is
finite. Now [5, Lemma 2.8] applies to yield the cofinality of E. Now, Theorem
2.7 finishes the proof.

Conversely, since Li(E) is locally finite, we have in particular that E is
finite. But since Li(FE) is just infinite we have in particular that Li(FE) is
infinite dimensional, so that by [3, Corollary 3.6] we have that E contains a
cycle C,,. Consider the case v ¢ (Cy,)°. Use Theorem 2.7 to receive that F
is cofinal, and by [5, Lemma 2.8], {v} = E°. Let t denote the smallest non-
negative integer having A;({v}) N (C,)° # 0. Pick w in this intersection. If
t >0, then Ay—1({v}) N (Cy,)° = 0, and therefore § # r(s~(w)) C Ay—1({v}).
In particular, At 1({v}) N (Cy)° # 0, a contradiction, so ¢ must be zero, thus

T({v}) N (C,)°? # 0. This also shows that C,, is the only cycle, because the
existence of any other cycle in E would necessarily yield an exit for C,,, which
cannot happen by Theorem 1.8. |

THEOREM 3.3: Let E be a graph for which Lk (F) is locally finite just infinite.
Let C denote the unique cycle in E, and let v be any vertex in C. Then

Ly (E) =M, (K[z,z™"]),

where n is the number of paths in E which do not contain C', and which end in
v. In particular, Lx(E) = Lk (C,,).

Proof. By Proposition 3.2 there is an integer m so that graph F is a C),-comet,
so that C' = (), is the unique cycle in E. Let ej,...,e,, and vi,...,v, be
respectively the edges and the vertices of the cycle C,,. That is: r(e;) = v; for
all 4, s(e;) = v;—1 for i > 1, and s(e1) = v,,. We eliminate the edge e; in the
graph F, and denote the resulting graph by F'

Let P = {p; : 1 < i < n} denote the set of all paths which end in v,,, and
which do not contain the cycle Cy,. That is, p;’s are the paths in F ending in
Um, Or with the notation used in [3], p;’s are the paths in R(v,,). Since E is a
Cyp-comet, graph, the graph F is finite and acyclic, so that |P| = n is indeed
finite.
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Consider the set B = {pickp;f}i,je{L,..,n},keZ, where c = e ...e,, is the cycle
Cm. (We use the notation c& = (¢*)~* for negative k, and that ¢ = v,,. Note
that these conventions are possible as the usual rules for exponents are valid
here, due to the fact that the cycle C,, has no exits.)

We claim that B is a basis of L (FE) as a K-vector space. To this end, we
first consider the inclusion map from F to E. This map is a complete graph
homomorphism (see [4, p. 5]), and therefore induces a K-algebra homomorphism
¢ : Lg(F) — Lg(E) by [4, Lemma 2.2] since the relations (1) through (4) in
Lk (F) are preserved by ¢. Moreover, F has vy, as its only sink, as every other
vertex connects to the cycle C,, and therefore to v,,.

Thus, by [3, Proposition 3.5], Lk (F’) is simple and therefore ¢ is a monomor-
phism. If fact, it was shown in [3, Proof of Lemma 3.4]| that
{pip}tijeqn,...ny is a set of matrix units such that p;p; = dijv,. We trans-
late this information via the monomorphism ¢ to get the analogous relations in
Ly (E).

Suppose now that z = Zmyk aijkpickp;f = 0 for a1 € K. Then for arbitrary
i, jo we have that 0 = pj xp;, = Ziw—mk QigjokC”, which then gives vy jor = 0
for all k € Z, as powers of the cycle are linearly independent in Ly (E). This
shows that B is a linearly independent set.

On the other hand, we realize that the set Y = {p;pj} U {e1,e]} generates
Lk (F) as a K-algebra (to show this it is enough to consider that L (F) is
generated as a K-algebra by {p;pj} and apply the monomorphism ¢). Clearly,

Y C B (for instance, e; = c(ez...epn)* € B). Moreover, B is closed under prod-
ket

*

Ps-
proved that B is a generator set of Lx(F) as a K-vector space, and therefore,

ucts with the general formula (pickp;f)(p,.ctp:) = 0jppic Thus, we have
a basis.

Finally, define the map ¢ : Lx(E) — M, (K[z,271]) on the basis by set-
ting gb(pickp;) = x”e;; (where e;; denotes the standard (4, j)-matrix unit), and
extend linearly to all of Li(E). This map is a K-algebra homomorphism as
we have ¢((pickpt) (prctp?)) = H(BjepictTpt) = Sjna*Hers = (ahes;)(aters) =
qﬁ(pickp;)qﬁ(prctp:). It is bijective as it maps a basis of Lk (FE) to a basis of
M, (K [z, 2~ ']). Therefore it is the desired isomorphism. n

As a specific consequence of Theorem 3.3 we can complete the n = 1 case of
[2, Proposition 13] .
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COROLLARY 3.4: Let E}" denote the graph with n vertices and n edges

Then Ly (E?) =M, (K[z,z71]).

Remark 3.5: It turns out that two nonisomorphic C,,,-comets can give rise to iso-
morphic Leavitt path algebras, although this isomorphism need not be graded.
For example, consider the Ci-comet graph E and Cs-comet graph F' given by

Theorem 3.3 yields that each is isomorphic to My (K |[x, 27 ']). However, these
two Leavitt path algebras cannot be isomorphic as graded algebras, since one
can check that L (F)g is generated as a K-vector space by the linearly indepen-
dent set {u,v,ef*, fe*}, while Li (F)g is generated by the linearly independent
set {a,b}, so that dimg Lk (F)g # dimg L (F)o.

COROLLARY 3.6: For n,n’ € N we have that L (Cy,) = L (C)/) if and only if

n=n'.

Proof. Since K[z,r7!] is a commutative ring, we may apply [9, Exercise 14,
p. 480] together with Theorem 3.3 to get the result. |

The corollary in turn gives the following complete classification of the locally
finite just infinite Leavitt path algebras.

COROLLARY 3.7: A complete irredundant set of the isomorphism classes of
locally finite just infinite Leavitt path algebras is given by

(M, (K[z,z"Y]) : n € N}.

Having described the locally finite just infinite Leavitt path algebras, we
are now in position to describe all locally finite Leavitt path algebras. As a
consequence of the following theorem, we will see two things. First, that the
class of locally finite Leavitt path algebras consists precisely of finite direct
sums of locally finite just infinite Leavitt path algebras with finite dimensional
Leavitt path algebras. Second, that the locally finite Leavitt path algebras are
precisely the noetherian Leavitt path algebras.
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THEOREM 3.8: Let E be a graph such that Li(FE) is a locally finite algebra.
Then L (F) is isomorphic to

(émm (Kle.a™') ) 0 (éPM ).

where: [ is the number of cycles in E (call them ¢y, ..., c;), m; is the number of
paths ending in a fixed (although arbitrary) vertex vy, of the cycle ¢; which do
not contain the cycle itself (for 1 <1i <1); I is the number of sinks in E (call
them w41, ..., w4y ), and for every j € {1,...,l'}, n; is the number of paths
ending in the sink w4 ;.

Proof. Let A; be the set of paths in E ending in a fixed vertex vy, of the cycle
¢; which do not contain ¢;. Write ¢; = e} ...el, and ¢ = {v},..., v}, }, where
r(e},) = vy, for all k, s(e}) = v}, and s(e},) = vj_, for all k > 1.

We pull out the edges e} in the graph E to obtain a new graph, which we
denote by F.

For a sink w; with j =1+41,...,i14+1, let A; be the set of paths of E ending

in the sink w;. Let A = JAy = {p;+}. Consider
X={pctp::keZrs=1,.. . card(A);t=1,...,14+1'},

where for t > [ we let ¢; denote wy, wf denote w; for all k € Z, and c,’f denote
() Ffork<0,te{l,... 0}

Let B be the set of all nonzero elements in X. Note that an element p,cfp*
is in B if and only if p,,ps € As for t € {1,...,1+1'}.

We claim that B is a basis for Li(F) as a K-vector space. To show this,
define the inclusion map ¢ : L (F) — Lk (E) in the natural way. It is a well-
defined homomorphism because the relations (1)—(4) in Lk (F') are consistent
with those in Li(E). To show that ¢ is a monomorphism, we produce a left
inverse.

Define v : Lx(F) — Ly (F), first on generators, by setting

V(el) = (eh, )" ... (eh)* and (z) =z for every x # €}
and then extending to all of Lx(F). It is long, but straightforward, to check
that ¢ is well-defined, and Yo = 11, ().
Following [3, Lemma 3.4 and Proposition 3.5], we have that the elements
in the set {pip; : pi,p; € Ay, for an arbitrary t} are a set of matrix units
in I,, for v € {wy1,...,wr} U{v,,,7 = 1,...,1}. Hence their union,
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call it T, generates Lk (F). Applying the monomorphism ) we obtain that
Y = T U{e,(el)*i = 1,...,1} generates Lx(E) as a K-algebra. Clearly
Y C B, and Y is closed under products because the general formula

(Pichp}) (prcipl) = 07 6rpichtpl

holds. It can be shown, as in the proof of Theorem 3.3, that B is a linearly
independent set.
Finally, define ¢ as the K-linear extension of:

Lg(E) — (ie_l?Mmi(K[x,xl])) ® (éMnj (K))

Jj=1

A _ 0 9 lt * l] b b
r — {0} pckp]'—){pz'ﬁ for k=I1+4+1,...;0+V

This map is a K-algebra homomorphism, and is in fact an isomorphism
because it sends a basis of Lx(F) to a basis of (@2:1 M, (K[z,zfl])) D

() M, (1))

The description of the locally finite Leavitt path algebras given in Theorem
3.8 yields the final two results of this article.

COROLLARY 3.9: The class of locally finite Leavitt path algebras consists pre-
cisely of finite direct sums of locally finite just infinite Leavitt path algebras
and finite dimensional Leavitt path algebras.

Proof. If Lk (FE) is locally finite, then by Theorem 3.8 we have

Li(E) = (ie_l?Mmi(K[az,xl])> ® <-€EMW (K)>.

The result now follows from Theorem 3.3 and [3, Corollary 3.7]. i

THEOREM 3.10: For a graph E and field K the following conditions are equiv-
alent:
(i) Lx(E) is locally finite.
(ii) Lk (F) is left or right noetherian.
(ii) Lx(F) is left and right noetherian.
(iil) FE is finite and has Condition (NE).
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Proof. (i) = (ii)’. It is well-known that A = K[z,27!] is a left and right
noetherian ring, and hence so is any finite matrix ring over A. Now the result
follows directly from Theorem 3.8.

(ii) = (iii). It is clear that F must be finite. Suppose to the contrary that
there exists a cycle in E with an exit e. Denote s(e) by v, and let u denote the
cycle based at v. We claim that

{0} C Lr(B)(v — pp*) € Lr(E)(v — p?(u*)?) C -+
is a properly increasing sequence of left ideals of L (E). The containment
Lg(E)(v - p' (1)) C Lr(E)(v — p"™ (u*)™1)
for each ¢ > 0 follows from the easily checked equation

v— (1) = (v = p' (1)) (0 — ).

To show that the containments are proper, we show that v — p‘+i(p*)+! &
Lk (E)(v — pi(p*)?). On the contrary, if v — p'*(u*)* = a(v — pf(u*)?) for
some o € Lx(E), then multiplying on the right by u? would give puf — 'ty =
a(pt — pt) = 0, so that u® = ptlu*, which gives ple = ptlu*e. But this is
impossible, as follows. Since s(e) = r(u) = v we have u‘e # 0 in Ly (E). But
since e is an exit for u we have p*e = 0, so that p**u*e = 0, a contradiction.

(iii) = (i) follows from Theorem 1.8. |
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